This lesson is still being designed and assembled (Pre-Alpha version)

Introduction to High Performance Computing for astronomical software development: Performance analysis tools

Resource Monitoring and Performance Analysis

Monitoring Job Performance

#!/bin/bash

#SBATCH --partition=gpu
#SBATCH --gpus=1
#SBATCH --job-name=ResourceMonitor
#SBATCH --output=ResourceMonitor_%j.out
#SBATCH --time=00:10:00  # 10 minutes max (5 for monitoring + buffer)

# --------- Configuration ---------
LOG_FILE="resource_monitor.log"
INTERVAL=30    # Interval between logs in seconds
DURATION=60   # Total duration in seconds (5 minutes)
ITERATIONS=$((DURATION / INTERVAL))

# --------- Start Monitoring ---------
echo "Starting Resource Monitoring for $DURATION seconds (~$((DURATION/60)) minutes)..."
echo "Logging to: $LOG_FILE"
echo "------ Monitoring Started at $(date) ------" >> "$LOG_FILE"

# --------- System Info Check ---------
echo "==== System Info Check ====" | tee -a "$LOG_FILE"
echo "Hostname: $(hostname)" | tee -a "$LOG_FILE"

# Check NVIDIA driver and GPU presence
if command -v nvidia-smi &> /dev/null; then
    echo "✅ nvidia-smi is available." | tee -a "$LOG_FILE"
    if nvidia-smi &>> "$LOG_FILE"; then
        echo "✅ GPU detected and driver is working." | tee -a "$LOG_FILE"
    else
        echo "⚠️ NVIDIA-SMI failed. Check GPU node or driver issues." | tee -a "$LOG_FILE"
    fi
else
    echo "❌ nvidia-smi is not installed." | tee -a "$LOG_FILE"
fi

echo "Checking for NVIDIA GPU presence on PCI bus..." | tee -a "$LOG_FILE"
if lspci | grep -i nvidia &>> "$LOG_FILE"; then
    echo "✅ NVIDIA GPU found on PCI bus." | tee -a "$LOG_FILE"
else
    echo "❌ No NVIDIA GPU detected on this node." | tee -a "$LOG_FILE"
fi

echo "" | tee -a "$LOG_FILE"

# --------- Trap CTRL+C for Clean Exit ---------
trap "echo 'Stopping monitoring...'; echo '------ Monitoring Ended at $(date) ------' >> \"$LOG_FILE\"; exit" SIGINT SIGTERM

# --------- Monitoring Loop ---------
for ((i=1; i<=ITERATIONS; i++)); do
    echo "========================== $(date) ==========================" >> "$LOG_FILE"

    # GPU usage monitoring
    echo "--- GPU Usage (nvidia-smi) ---" >> "$LOG_FILE"
    nvidia-smi 2>&1 | grep -v "libnvidia-ml.so" >> "$LOG_FILE"
    echo "" >> "$LOG_FILE"

    # CPU and Memory monitoring
    echo "--- CPU and Memory Usage (top) ---" >> "$LOG_FILE"
    top -b -n 1 | head -20 >> "$LOG_FILE"
    echo "" >> "$LOG_FILE"

    sleep $INTERVAL
done

echo "------ Monitoring Ended at $(date) ------" >> "$LOG_FILE"
echo "✅ Resource monitoring completed."

Understanding Outputs - top - CPU and Memory Monitoring

Example Output:

--- CPU and Memory Usage (top) ---
top - 17:53:49 up 175 days,  9:41,  0 users,  load average: 1.01, 1.06, 1.08
Tasks: 765 total,   1 running, 764 sleeping,   0 stopped,   0 zombie
%Cpu(s):  2.2 us,  0.1 sy,  0.0 ni, 97.7 id,  0.0 wa,  0.0 hi,  0.0 si,  0.0 st
MiB Mem : 515188.2 total, 482815.2 free,  17501.5 used,  14871.5 buff/cache
MiB Swap:   4096.0 total,   4072.2 free,     23.8 used. 493261.3 avail Mem

Explanation:

Header Line - System Uptime and Load Average

top - 17:53:49 up 175 days,  9:41,  0 users,  load average: 1.01, 1.06, 1.08

Task Summary

Tasks: 765 total,   1 running, 764 sleeping,   0 stopped,   0 zombie

CPU Usage

%Cpu(s):  2.2 us,  0.1 sy,  0.0 ni, 97.7 id,  0.0 wa,  0.0 hi,  0.0 si,  0.0 st
Field Meaning
us User CPU time - 2.2%
sy System (kernel) time - 0.1%
ni Nice (priority) - 0.0%
id Idle - 97.7%
wa Waiting for I/O - 0.0%
hi Hardware interrupts - 0.0%
si Software interrupts - 0.0%
st Steal time (virtualization) - 0.0%

Memory Usage

MiB Mem : 515188.2 total, 482815.2 free,  17501.5 used,  14871.5 buff/cache
Field Meaning
total Total RAM (515188.2 MiB)
free Free RAM (482815.2 MiB)
used Used by programs (17501.5 MiB)
buff/cache Disk cache and buffers (14871.5 MiB)

Swap Usage

MiB Swap:   4096.0 total,   4072.2 free,     23.8 used. 493261.3 avail Mem
Field Meaning
total Swap space available (4096 MiB)
free Free swap (4072.2 MiB)
used Swap used (23.8 MiB)
avail Mem Available memory for new tasks (493261.3 MiB)

Performance Comparison Script

import matplotlib.pyplot as plt

# Extracted timings from the printed output
methods = ['Sequential (CPU)', 'MPI (PCPU)', 'CUDA (GPU)']
times = [70.430, 13.507, 0.341] # Replace the times with the times printed by running the above scripts

plt.figure(figsize=(10, 6))
bars = plt.bar(methods, times, color=['blue', 'green', 'red'])
plt.ylabel('Execution Time (seconds)')
plt.title('Performance Comparison: CPU vs MPI vs GPU')

# Add labels above bars
for bar, time in zip(bars, times):
    plt.text(bar.get_x() + bar.get_width() / 2, bar.get_height() + 1,
             f'{time:.3f}s', ha='center', va='bottom')

plt.tight_layout()
plt.savefig('performance_comparison.png', dpi=300, bbox_inches='tight')
plt.show()

Exercise: Resource Efficiency Analysis

Run the above python script to create a comparitive analysis between the different methods you used in this tutorial to understand the efficiency of different resources

Example Solution

Performance Comparison

This plot shows the execution time comparison between CPU, MPI, and GPU implementations.

Best Practices and Common Pitfalls

Resource Allocation Best Practices

  1. Match resources to workload requirements
    • Don’t request more resources than you can use
    • Consider memory requirements carefully
    • Use appropriate partitions/queues
  2. Test with small jobs first
    • Validate your scripts with shorter runs
    • Check resource utilization before scaling up
  3. Monitor and optimize
    • Use profiling tools to identify bottlenecks
    • Adjust resource requests based on actual usage

Common Mistakes to Avoid

  1. Over-requesting resources
    # Bad: Requesting 32 cores for sequential code
    #SBATCH --cpus-per-task=32
    ./sequential_program
       
    # Good: Match core count to parallelization
    #SBATCH --cpus-per-task=1
    ./sequential_program
    
  2. Memory allocation errors
    # Bad: Not specifying memory for memory-intensive jobs
    #SBATCH --partition=defaultq
       
    # Good: Specify adequate memory
    #SBATCH --partition=defaultq
    #SBATCH --mem=16G
    
  3. GPU job inefficiencies
    # Bad: Too many CPU cores for GPU job
    #SBATCH --cpus-per-task=32
    #SBATCH --gpus-per-node=1
       
    # Good: Balanced CPU-GPU ratio
    #SBATCH --cpus-per-task=4
    #SBATCH --gpus-per-node=1
    

Summary

Resource optimization in HPC involves understanding your workload characteristics and matching them with appropriate resource allocations. Key takeaways:

Efficient resource utilization not only improves your job performance but also ensures fair access to shared HPC resources for all users.


Revisit Earlier Exercises

Now that you’ve learned how to submit jobs using Slurm and request computational resources effectively, revisit the following exercises from the earlier lesson:

Try running them now on your cluster using the appropriate Slurm script and resource flags.

Solution 1: Slurm Submission Script for Exercise MPI with mpi4py

The following script can be used to submit your MPI-based Python program (mpi_hpc_ws.py) on an HPC cluster using Slurm:

#!/bin/bash
#SBATCH --job-name=mpi_hpc_ws
#SBATCH --output=mpi_%j.out
#SBATCH --error=mpi_%j.err
#SBATCH --partition=defaultq
#SBATCH --nodes=2
#SBATCH --ntasks=4
#SBATCH --time=00:10:00
#SBATCH --mem=16G

# Load required modules
module purge
module load Python/3.9.1
module list


Create a python virtual environment 
python3 -m venv name_of_your_venv

Activate your Python environment
source name_of_your_venv/bin/activate

# Run the MPI job
mpirun -np 4 python mpi_hpc_ws.py

Make sure your virtual environment has mpi4py installed and that your system has access to the OpenMPI runtime via mpirun. Adjust the number of nodes and tasks depending on the cluster policies.

Solution 2: Slurm Submission Script for Exercise GPU with numba-cuda

The following script can be used to submit a GPU-accelerated Python job (numba_cuda_test.py) using Slurm:

#!/bin/bash
#SBATCH --job-name=Numba_Cuda
#SBATCH --output=Numba_Cuda_%j.out
#SBATCH --error=Numba_Cuda_%j.err
#SBATCH --partition=gpu
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=1
#SBATCH --cpus-per-task=4
#SBATCH --mem=16G
#SBATCH --gpus-per-node=1
#SBATCH --time=00:10:00

# --------- Load Environment ---------
module load Python/3.9.1
module load cuda/11.2
module list

# --------- Check whether the GPU is available ---------
from numba import cuda
print("CUDA Available:", cuda.is_available())
# Activate virtual environment
source 'name_of_venv'/bin/activate # Here name_of_venv refers to the name of your virtual environment without the quotes

# --------- Run the Python Script ---------
python numba_cuda_test.py

Make sure your virtual environment includes the numba-cuda python library to access the GPU.